Interstate vibronic coupling constants between electronic excited states for complex molecules.

نویسندگان

  • Maria Fumanal
  • Felix Plasser
  • Sebastian Mai
  • Chantal Daniel
  • Etienne Gindensperger
چکیده

In the construction of diabatic vibronic Hamiltonians for quantum dynamics in the excited-state manifold of molecules, the coupling constants are often extracted solely from information on the excited-state energies. Here, a new protocol is applied to get access to the interstate vibronic coupling constants at the time-dependent density functional theory level through the overlap integrals between excited-state adiabatic auxiliary wavefunctions. We discuss the advantages of such method and its potential for future applications to address complex systems, in particular, those where multiple electronic states are energetically closely lying and interact. We apply the protocol to the study of prototype rhenium carbonyl complexes [Re(CO)3(N,N)(L)]n+ for which non-adiabatic quantum dynamics within the linear vibronic coupling model and including spin-orbit coupling have been reported recently.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibronic coupling in benzene cation and anion: vibronic coupling and frontier electron density in Jahn-Teller molecules.

Vibronic coupling constants of Jahn-Teller molecules, benzene radical cation and anion, are computed as matrix elements of the electronic part of the vibronic coupling operator using the electronic wave functions calculated by generalized restricted Hartree-Fock and state-averaged complete active space self-consistent-field methods. The calculated vibronic coupling constants for benzene cation ...

متن کامل

Solute-solvent intermolecular vibronic coupling as manifested by the molecular near-field effect in resonance hyper-Raman scattering.

Vibronic coupling within the excited electronic manifold of the solute all-trans-β-carotene through the vibrational motions of the solvent cyclohexane is shown to manifest as the "molecular near-field effect," in which the solvent hyper-Raman bands are subject to marked intensity enhancements under the presence of all-trans-β-carotene. The resonance hyper-Raman excitation profiles of the enhanc...

متن کامل

Determination of the geometry change of 5-cyanoindole upon electronic excitation from a combined Franck-Condon/rotational constants fit.

The geometry change of 5-cyanoindole upon electronic excitation from the ground to the lowest excited singlet state has been determined from a combined fit of the rotational constant changes upon excitation and the vibronic intensities in various fluorescence emission spectra using the Franck-Condon principle. The so determined geometry change is compared to the results of ab initio calculation...

متن کامل

Experimental investigation of the Jahn-Teller effect in the ground and excited electronic states of the tropyl radical. Part II. Vibrational analysis of the A 2E"3-X 2E"2 electronic transition.

Laser-induced fluorescence (LIF) and laser-excited dispersed fluorescence (LEDF) spectra of the cycloheptatrienyl (tropyl) radical C7H7 have been observed under supersonic jet-cooling conditions. Assignment of the LIF excitation spectrum yields detailed information about the A-state vibronic structure. The LEDF emission was collected by pumping different vibronic bands of the A 2E"3<--X 2E"2 el...

متن کامل

Title Vibronic coupling in benzene cation and anion: Vibronic coupling and frontier electron density in Jahn-Teller molecules

Vibronic coupling constants of Jahn-Teller molecules, benzene radical cation and anion, are computed as matrix elements of the electronic part of the vibronic coupling operator using the electronic wave functions calculated by generalized restricted Hartree-Fock and state-averaged complete active space self-consistent-field methods. The calculated vibronic coupling constants for benzene cation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 148 12  شماره 

صفحات  -

تاریخ انتشار 2018